博客
关于我
最近邻插值算法的c++实现(QT框架)
阅读量:765 次
发布时间:2019-03-24

本文共 470 字,大约阅读时间需要 1 分钟。

最近邻插值(KNN)是一种常用的图像处理算法,用于在已知像素点的基础上填充输出图像。这套算法通过像素复制和像素抽样技术,让原本不够大的图像能够在放大或缩小几倍后依然保持良好的图像质量。

假设原图的宽度为 W,高度为 H,而缩放后的图像宽度为 w,高度为 h,那么宽度和高度的缩放比例分别是:

  • 宽度缩放比例:w/W
  • 高度缩放比例:h/H

在实际操作中,KNN算法通过以下步骤来实现图像的高效缩放:

  • 初始化缩放比例:根据目标图像的宽度和高度计算相对于原图的缩放比例。
  • 逐行处理:从目标图像的第一行开始,逐行处理原始图像对应的像素点。
  • 确定对应像素点:通过对当前目标行进行竖直方向的缩放比例计算,找到原始图像中对应的像素行。
  • 逐列复制:根据水平方向的缩放比例,将原始图像对应的像素点逐列复制到目标图像中。
  • 这种方法的核心在于通过简单的算术运算和内存复制操作,实现了对图像按像素水平进行的原始比例保留,从而显著提升了图像缩放时的质量和效率。

    通过以上方法实现的图像缩放既能有效解决图像尺寸调整问题,又能在一定程度上保护图像细节,使其更加清晰和逼真。

    转载地址:http://ebjkk.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0002---Netty的应用场景
    查看>>
    Netty工作笔记0003---IO模型-BIO-Java原生IO
    查看>>
    Netty工作笔记0004---BIO简介,介绍说明
    查看>>
    Netty工作笔记0005---NIO介绍说明
    查看>>
    Netty工作笔记0006---NIO的Buffer说明
    查看>>
    Netty工作笔记0007---NIO的三大核心组件关系
    查看>>
    Netty工作笔记0008---NIO的Buffer的机制及子类
    查看>>
    Netty工作笔记0009---Channel基本介绍
    查看>>
    Netty工作笔记0010---Channel应用案例1
    查看>>
    Netty工作笔记0011---Channel应用案例2
    查看>>
    Netty工作笔记0012---Channel应用案例3
    查看>>
    Netty工作笔记0013---Channel应用案例4Copy图片
    查看>>
    Netty工作笔记0014---Buffer类型化和只读
    查看>>
    Netty工作笔记0015---MappedByteBuffer使用
    查看>>
    Netty工作笔记0016---Buffer的分散和聚合
    查看>>
    Netty工作笔记0017---Channel和Buffer梳理
    查看>>
    Netty工作笔记0018---Selector介绍和原理
    查看>>
    Netty工作笔记0019---Selector API介绍
    查看>>
    Netty工作笔记0020---Selectionkey在NIO体系
    查看>>
    Netty工作笔记0021---NIO编写,快速入门---编写服务器
    查看>>