博客
关于我
最近邻插值算法的c++实现(QT框架)
阅读量:765 次
发布时间:2019-03-24

本文共 470 字,大约阅读时间需要 1 分钟。

最近邻插值(KNN)是一种常用的图像处理算法,用于在已知像素点的基础上填充输出图像。这套算法通过像素复制和像素抽样技术,让原本不够大的图像能够在放大或缩小几倍后依然保持良好的图像质量。

假设原图的宽度为 W,高度为 H,而缩放后的图像宽度为 w,高度为 h,那么宽度和高度的缩放比例分别是:

  • 宽度缩放比例:w/W
  • 高度缩放比例:h/H

在实际操作中,KNN算法通过以下步骤来实现图像的高效缩放:

  • 初始化缩放比例:根据目标图像的宽度和高度计算相对于原图的缩放比例。
  • 逐行处理:从目标图像的第一行开始,逐行处理原始图像对应的像素点。
  • 确定对应像素点:通过对当前目标行进行竖直方向的缩放比例计算,找到原始图像中对应的像素行。
  • 逐列复制:根据水平方向的缩放比例,将原始图像对应的像素点逐列复制到目标图像中。
  • 这种方法的核心在于通过简单的算术运算和内存复制操作,实现了对图像按像素水平进行的原始比例保留,从而显著提升了图像缩放时的质量和效率。

    通过以上方法实现的图像缩放既能有效解决图像尺寸调整问题,又能在一定程度上保护图像细节,使其更加清晰和逼真。

    转载地址:http://ebjkk.baihongyu.com/

    你可能感兴趣的文章
    Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
    查看>>
    Nacos配置中心集群原理及源码分析
    查看>>
    nacos配置自动刷新源码解析
    查看>>
    Nacos集群搭建
    查看>>
    nacos集群搭建
    查看>>
    nagios安装文档
    查看>>
    Navicat for MySQL 查看BLOB字段内容
    查看>>
    Neo4j电影关系图Cypher
    查看>>
    Neo4j的安装与使用
    查看>>
    Neo4j(2):环境搭建
    查看>>
    Neo私链
    查看>>
    nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
    查看>>
    Nessus漏洞扫描教程之配置Nessus
    查看>>
    Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
    查看>>
    nestJS学习
    查看>>
    Net 应用程序如何在32位操作系统下申请超过2G的内存
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>